Toward global mapping of river discharge using satellite images and at-many-stations hydraulic geometry.
نویسندگان
چکیده
Rivers provide critical water supply for many human societies and ecosystems, yet global knowledge of their flow rates is poor. We show that useful estimates of absolute river discharge (in cubic meters per second) may be derived solely from satellite images, with no ground-based or a priori information whatsoever. The approach works owing to discovery of a characteristic scaling law uniquely fundamental to natural rivers, here termed a river's at-many-stations hydraulic geometry. A first demonstration using Landsat Thematic Mapper images over three rivers in the United States, Canada, and China yields absolute discharges agreeing to within 20-30% of traditional in situ gauging station measurements and good tracking of flow changes over time. Within such accuracies, the door appears open for quantifying river resources globally with repeat imaging, both retroactively and henceforth into the future, with strong implications for water resource management, food security, ecosystem studies, flood forecasting, and geopolitics.
منابع مشابه
Investigating the Chaotic Nature of Flow the Upstream and Downstream of Zayandehrud-Dam Reservoir Using Chaotic Systems’ Criteria
River discharge is among the influential factors on the operation of water resources systems and the design of hydraulic structures, such as dams; so the study of it is of great importance. Several effective factors on this non-linear phenomenon have caused the discharge to be assumed as being accidental. According to the basics the chaos theory, the seemingly random and chaotic systems have re...
متن کاملEstimation of river discharge, propagation speed, and hydraulic geometry from space: Lena River, Siberia
[1] Moderate Resolution Imaging Spectroradiometer (MODIS)–derived measurements of Lena River effective width (We) display a high predictive capacity (r 2 = 0.81, mean absolute error < 25%) to forecast downstream discharge conditions at Kusur station, some 8 d and 700 km later. Satellite-derived mean flow propagation speed (88 km d 1 or 1.01 m s ) compares well with that estimated from ground da...
متن کاملInvestigating the Land Use Changes in the Upstream of the Zayandehrood Dam (A Study Case: The Toff-sefid Watershed, Chaharmaha and Bakhtiari Provin
River discharge is among the influential factors on the operation of water resources systems and the design of hydraulic structures, such as dams; so the study of it is of great importance. Several effective factors on this non-linear phenomenon have caused the discharge to be assumed as being accidental. According to the basics the chaos theory, the seemingly random and chaotic systems have re...
متن کاملEstimating river discharge from very high-resolution satellite data: a case study in the Yangtze River, China
The measurement of river discharge is necessary for understanding many water-related issues. Traditionally, river discharge is estimated by measuring water stage and converting the measurement to discharge by using a stage–discharge rating curve. Our proposed method for the first time couples the measurement of water-surface width with river width–stage and stage–discharge rating curves by usin...
متن کاملRiver Discharge Estimation by Using Altimetry Data and Simplified Flood Routing Modeling
A methodology to estimate the discharge along rivers, even poorly gauged ones, taking advantage of water level measurements derived from satellite altimetry is proposed. The procedure is based on the application of the Rating Curve Model (RCM), a simple method allowing for the estimation of the flow conditions in a river section using only water levels recorded at that site and the discharges o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 111 13 شماره
صفحات -
تاریخ انتشار 2014